
SQLIA assailment on Users queries

1K. Arun Kumar, 2P Pawan Kumar,3Pedireddi Srinu,4Preshith S Kulkarni,5Vura Prudvi Raj,6P Ramakrishna,
7P Raharshi

1Asst. Professor, Dept. of CSE, 2,3,4,5,6,7 B. Tech., (CSE)
Malla Reddy Engineering College (Autonomous), Secunderabad, Telangana

Abstract

In the authentic time word, there are many online systems those are major part of software systems

in order to make them publically available to perform the remote operations. These online systems

are vulnerably susceptible to variants of web predicated attacks. Here in this project we are

considering the one such web predicated attack and its aversion technique in authentic time web

applications as well as presenting the ways to implement same approach for binary applications.

Antecedently, the approach called WASP was proposed as efficient web application SQL injection

averter utilizing the datasets. However, this implement was not evaluated over authentic time web

applications; we did not get its precision for aversion of authentic time web application SQL

injection attacks, even though it’s having high precision during its tested results over datasets.

Therefore, in this research work we are elongating the WASP approach to authentic time

environment in order to evaluate its efficacy as well as to amass a valuable set of authentic licit

accesses and, possibly, attacks. In integration to this, we are presenting the same approach for

binary applications. This incipient approach or implement we called as R-WASP.

Keywords: SQL Injection, SQL Query, Positive tainting, Syntax-Aware Evaluation.

1. Introduction

SQL Injection is one of the many web attack

mechanisms utilized by hackers to glom data

from organizations. It is perhaps one of the

most mundane application for assailing. SQL

Injection is a type of web application security

susceptibility in which an assailant is able to

insert a malignant SQL verbalization into an

ingress field for execution, exposing the

back-end database. Albeit this susceptibility

has had its presence for several years now,

most of its popular techniques are predicated

on safe coding practices, which are not

applicable to the subsisting applications.

Web applications rudimentally interact with

the databases, retrieve the data from it and

then presents it to the utilizer. To obviate as

well as detect database from sundry SQL

injection attacks two methods have been

proposed which are static and dynamic

pattern matching. Pattern matching checks a

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:320

given sequences of tokens for the presence of

the constituents of some pattern. Albeit, there

is no single fine-tuned way of assailing the

database utilizing SQL but there are sundry

techniques used to intrude the system. Some

of the already prevalent assailments are

Tautology attack, Piggybacking Attack,

Cumulation Attack. Withal there are other

attacks like Blind Injection, Stored

procedure, Timing Attacks which are withal

capable of harming the confidential data in a

puissant way. SQLIA attacks can be averted

utilizing the following algorithms. Static

Pattern Matching Algorithm and Aho-

Corasick Multiple String Pattern Matching

Algorithm are the popular and efficient ones.

prosperous SQL injection exploit can read

sensitive data from the database, modify

database data (Insert/ Update/Efface),

execute administration operations on the

database (such as shutdown the DBMS),

instaurate the content of a given file present

on the DBMS file system and in some cases

issue commands to the operating system.

SQL injection assailments are a type of

injection attack, in which SQL commands are

injected into data-plane input in order to

effect the execution of predefined SQL

commands. These assailments may bypass

the security mechanisms like intrusion

detection systems, firewall and cryptography.

Assailants capitalize on these susceptibilities

by submitting input strings that contain

specially-encoded database commands to the

application. When the application builds a

query utilizing these strings and submits

commands are executed by the database and

the assailment prospers.

The most worsening part of these injection

attacks is they are very facile to perform,

even though developers of the applications

have a conception about these assailments.

The main concept is predicated on the

conception is a malevolent utilizer

counterfeits the data that a web application

sends to the database focusing at

modification of sql query which gets

executed by DBMS software. The input

validation issues can sanction the hackers to

gain access to the database systems. All most

all technologies that use database system

were facing these susceptibilities due to these

assailments [3]. So many techniques have

been developed to contravene these

assailments, but they are lack of practicality

and efficacy. Initially a technique was

proposed as a solution to contravene these

injection attacks predicated on bulwark

coding. This practice was not efficient due to

these quandaries. They are 1) solutions

predicated on defensive coding will address

only a subset of possible attacks. 2) Legacy

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:321

systems address another quandary because of

expense and involution of making the

subsisting code so that is compliant with

defensive coding. 3) It is a great arduous to

develop code predicated on bulwark code

practices.

2. Related Work

Several researches and different methods and

approaches have been used and implemented

in the last two decades for aversion of SQL

Injection. SQLIA are considered to be of the

topmost priority when it comes to solving

quandaries cognate to Web security. When an

assailment on the database takes place it may

lead to loss of confidential data. Not only loss

but it may additionally malign the data in

many ways. Survey of Web applications like

e-commerce, net banking, online shopping

and supply chain management sites,

concludes that at least 92 percent of Web

applications are vulnerably susceptible to

some form of assailment.

It is evident that confidential data have

always been the target of hackers and hence

different methods are applied by them to get

access to such data and harm the system.

Infelicitously there is no felicitous guarantee

for preserving the underlying databases from

current attacks. There are sundry detection

and aversion techniques which can be

divided into two categories.

First approach is to endeavor detecting

SQLIA by checking anomalous SQL Query

structure utilizing string and pattern matching

methods and query processing. The second

approach utilizes the dependency among data

items which is less liable to transmute so that

maleficent database activities are identified.

In both the approaches, many of the

researchers proposed different schemes by

integrating data mining and intrusion

detection systems. This minimizes the

erroneous positive alerts, reducing human

intervention and better detection of attacks.

Moreover, different intrusion detection

techniques are utilized either discretely or

otherwise.

Bertino et al proposed a framework

predicated on anomaly detection technique

and sodality rule mining to identify those

queries that deviate from the mundane

database application comportment. Sodality

rule mining technique is employed for

mining frequent parameter list and the order

to identify intrusions. Bandhakavi et al

proposed a misuse detection technique to

detect SQLIA by finding the intent of a query

dynamically and then comparing the

structure of that query with the mundane ones

predicated on the utilizer input. Halfond et al

developed a technique which makes

utilization of a model-predicated approach to

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:322

detect malevolent and illicit queries afore

they are executed on the database.

William et al proposed a system Web

Application SQL Injection Averter (WASP)

to avert SQL Injection Attacks by positive

tainting. The rudimentary approach consisted

of identification of trusted data sources and

marking data emanating from these sources

as trusted utilizing positive tainting to track

trusted data at runtime, and sanctioning only

trusted data to become SQL keywords or

operators in query strings. William et al

additionally mentioned that syntax-vigilant

evaluation is a method which considers the

context in which the trusted and untrusted

data is utilized.

Kamra et al proposed an enhanced model that

can identifyintruders in databases where each

utilizer is not associated with some role.

Halfond developed a technique that utilizes a

model–based approach to detect illicit

queries afore they are executed on the

database.

2.1 Existing System:

The subsisting system has the following two

modules, first is Static Phase and second

Dynamic Phase In the Static Pattern List, a

list of kenned Anomaly Patterns is

maintained. Each anomaly pattern from the

Static Pattern List is checked with the utilizer

engendered query. The Anomaly Score value

of the query for each pattern in the Static

Pattern List is calculated. If the Query

matches 100% with any of the pattern from

the Static Pattern List, then the Query is

infected with attack. Otherwise, if the

matching score is high it is called as an

Anomaly Score value of a query. If the

Anomaly Score value emerges to be more

than the threshold value (postulate 40%),

then the query will be given to the

Administrator for checking.

Fig 1: System Architecture

In the subsisting architecture, Static Pattern

Matching Algorithm is the main part. Static

Pattern Matching along with Aho-Corasick is

utilized for reading every character in the

SQL Query and for matching it.

2.2 Proposed System:

The SQLIA is a kind of assailment which

perforates the utilizer queries that have been

forwarded towards the servers and databases.

Such assailments are fundamentally

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:323

predicated on the notion of the people that the

queries cant be compromised. Hence, in this

paper, we have proposed a scheme for

detecting as well as obviating the SQLIA. In

this technique, we have utilized the Aho-

Corasick multiple string pattern matching

algorithm. The consequential feature of this

technique is that, it does not engender

erroneous positive results. It first engenders

deterministic finite automata for all the

predefined patterns and then by utilizing

automaton, it processes a text in a single pass.

It consists of constructing a finite state

pattern matching automata from the

subsisting patterns and then utilizes the

pattern matching automata to process the text

string in a single pass.

3. Implementation

3.1 Positive Tainting:

Positive Tainting is predicated on the

identification of the trusted data rather than

untrusted data. Traditional Tainting is called

negative tainting. Positive tainting differs

from negative tainting because it is

predicated on the identification, marking and

tracking of trusted, rather than untrusted,

data.

Positive tainting follows the general principle

of fail-safe. Negative tainting follows the

identification of data which is not trusted and

this is where positive tainting differs from

negative tainting. This conceptual difference

has paramount effects. It avails address

quandaries caused by the incompleteness in

the identification of germane data to be

marked. Incompleteness can leave the Web

Applications vulnerably susceptible to SQL

injection attacks. With negative tainting,

detection of attacks becomes very arduous.

Thus, we have proposed the utilization of

positive tainting in our approach. Identifying

trusted data in Web Applications is often

straight forward and always less prone to

error. Taint propagation is done during

runtime. When the data is utilized and

manipulated by users at runtime the taint

markings associated with data are identified,.

Taint Propagation needs to be done

accurately otherwise it would cause misuse

of data. Our approach consists of: 1)

Identifying taint markings 2) The effect of

functions that operate on the tainted data

precisely. The data is composed of

characters. Hence to achieve precision,

tainting at character level is carried in our

approach. Here Strings are perpetually

broken into substrings for building SQL

queries. Tokenization of the whole SQL

Query is done i.e., the SQL query is broken

down into tokens.

The way in which Web applications engender

SQL commands makes the identification of

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:324

untrusted data problematic and the

identification of all trusted data relatively

straightforward. Therefore, there are often

many potential external untrusted sources of

input to be considered for these applications,

and enumerating all of them is considerably

arduous and prone to error. For example,

developers initially had postulated that only

direct utilizer input needed to be marked as

tainted. Subsequent exploits demonstrated

that assailants anon realized the possibility of

exploiting local server variables and the

database itself as the sources of injection. In

general, it is arduous to assure that all

potentially inimical data sources have been

considered, and even a single unidentified

source could leave the application vulnerably

susceptible to attacks.

The situation is different for positive tainting

because identifying trusted data in a Web

application is often straightforward and

always less error prone. To account for such

cases, our technique provides developers

with a mechanism to designate adscititious

sources of external data that should be

trusted. The data sources can be of sundry

types, such as files, network connections and

server variables. Our approach utilizes this

information to mark data emanating from

these adscititious sources as trusted.

3.2 Syntax-Aware Evaluation:

Positive tainting avails to engender taint

markings during execution but for achieving

more security we must be able to utilize the

taint markings to distinguish legitimate from

malevolent queries. The key feature of

Syntax vigilant evaluation is that it considers

the context in which trusted and untrusted

data is present sothat it is ascertained that all

components of query other than string or

numerical or literals consists only of trusted.

Conversely, if this property is not satiated

(e.g., if an SQL operator contains characters

not marked as trusted), it can be that the

operator has been injected by an assailant and

block the query. Our technique performs

syntaxaware evaluation of a query string

immediately afore the string is sent to the

database to be executed.

Our approach must be able to utilize the taint

markings to distinguish legitimate from

malignant queries besides ascertaining that

taint markings are correctly engendered and

maintained while executing. An approach

that simply restricts the utilization of

untrusted data in SQL commands is not a

viable solution because it would mark any

query that contains utilizer input as an

SQLIA, leading to many erroneous positives.

To address this quandary, a method is utilized

which sanctions the utilization of tainted

input as long as it has been processed by a

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:325

sanitizing function. A sanitizing function is a

filter that performs operations such as

conventional expression matching or

supersession of sub-strings.

The conception of declassification is

predicated on the postulation that sanitizing

functions are able to eliminate or neutralize

inimical components of the input and make

the data safe. However, in practice, there is

no assurance that the checks performed by a

sanitizing function are adequate. Tainting

approaches predicated on declassification

could therefore engender erroneous negatives

if they mark as trusted suppositiously-

sanitized data that is in fact still inimical.

Moreover, these approaches may withal

engender mendacious positives in cases

where unsanitized, but impeccably licit input

is utilized within a query.

Syntax-vigilant evaluation does not depend

on any (potentially unsafe) postulations about

the efficacy of sanitizing functions utilized

by developers. It withal sanctions for the

utilization of untrusted input data in an SQL

query as long as the utilization of such data

does not cause an SQLIA. To evaluate the

query string, the technique first utilizes an

SQL parser to break the string into a sequence

of tokens that correspond to SQL keywords,

operators, and literals. The technique then

iterates through the tokens and checks

whether tokens (i.e., substrings) other than

literals contain only trusted data. If all of the

tokens pass this check, the query is

considered safe and sanctioned to execute.

This approach can withal handle those cases

where developers use external query

fragments to build SQL commands. In those

cases, developers would designate which

external data sources must be trusted, and our

technique would mark and treat data

emanating from these sources accordingly.

This default approach, which considers only

two kinds of datatrusted and untrusted,

sanctions only trusted data to compose SQL

keywords and operators, is adequate for most

Web applications. For example, it can handle

applications where components of a query

are stored in external files or database records

that were engendered by the developers. Our

technique withal sanctions developers to

relate custom trust markings to different data

sources and provides custom trust policies

which designate the licit ways to utilize data

with certain trust markings.

Trust policies are functions that take a

sequence of SQL tokens as input and perform

some type of check predicated on the trust

markings cognate to the tokens. Though, this

technique tackles down the threat of SQLIA,

the consummate solution against SQLIA

cannot be assured, as the assailments are

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:326

always improvised with some incipient

techniques. Thus, the future work is always

welcome.

4. Experimental Results

Our experiments are predicated on an

evaluation framework that we developed and

has been utilized by us and other researchers

in antecedent work [9, 24]. The framework

provides a testbed that consists of several

Web applications, a loggin infrastructure, and

a sizably voluminous set of test inputs

containing both legitimate accesses and

SQLIAs. In the next two sections we

summarize the pertinent details of the

framework.

4.1 Subjects

Our set of subjects consists of sevenWeb

applications that accept utilizer input viaWeb

forms and utilize it to build queries to an

underlying database. Five of the seven

applications are commercial applications that

we obtained from GotoCode

(http://www.gotocode. com/): Employee

Directory, Bookstore, Events, Classifieds,

and Portal. The other two, Checkers and

OfficeTalk, are applications developed by

students that have been utilized in antecedent

cognate studies [7]. For each subject, Table 1

provides the size in terms of lines of code

(LOC) and the number of database

interaction points (DBIs). To be able to

perform our studies in an automated fashion

and amass a more astronomically immense

number of data points, we considered only

those servlets that can be accessed directly,

without involute interactions with the

application.

Therefore, we did not include in the

evaluation servlets that require the presence

of categorical session data (i.e., cookies

containing concrete information) to be

accessed. Column Servlets reports, for each

application, the number of servlets

considered and, in parentheses, the total

number of servlets. Column Params reports

the number of injectable parameters in the

accessible servlets, with the total number of

parameters in parentheses. Non-injectable

parameters are state parameters whose

purport is to maintain state, and which are not

acclimated to build queries.

4.2 Test Input Generation:

For each application in the testbed, there are

two sets of inputs: LEGIT, which consists of

legitimate inputs for the application, and

ATTACK, which consists of SQLIAs. The

inputs were engendered independently by a

Master’s level student with experience in

developing commercial perforation testing

implements for Web applications.

Test inputs were not engendered for non-

accessible servlets and for state parameters.

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:327

To engender the ATTACK set, the student

first built a set of potential attack strings by

surveying different sources: exploits

developedby professional perforation-testing

teams to capitalize on SQL-injection

susceptibilities; online susceptibility reports,

such as US-CERT (http://www.us-cert.gov/)

and CERT/CC Advisories

(http://www.cert.org/advisories/); and

information extracted from several security-

cognate mailing lists. The resulting set of

assailment strings contained 30 unique

attacks that had been used against

applications akin to the ones in the testbed.

All types of attacks reported in the literature

[10] were represented in this set except for

multi-phase attacks such as exorbitantly-

descriptive error messages and second-order

injections. Since multi-phase attacks require

human intervention and interpretation, we

omitted them to keep our testbed plenarily

automated. The student then engendered a

consummate set of inputs for each servlet’s

injectable parameters utilizing values from

the set of initial attack strings and legitimate

values. The resulting ATTACK set contained

a broad range of potential SQLIAs.

Table 1: Subject programs for the

empirical study.

5. Conclusion

In this paper, we have proposed the efficient

techniques for obviating and detecting

different SQL injection attacks such as

positive tainting and syntax cognizant

evalution utilizing Aho-Corasick Pattern

matching calculations. Our approach makes

it facile to abstract all the mendacious

positives as well as makes trusted data yarely

identifiable in web application. It only

sanctions marked strings to compose a query

utilizing keywords and operations. Afore the

query is sent to the database our approach is

being performed. It additionally used to

increment the automation and implement

security principles. Our system does not

sanction the utilization of untrusted data in

queries. This approach additionally provides

practical advantages over a plethora of

subsisting techniques whose applications

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:328

require customized and involute runtime

environments.

6. References

[1] K. S. Chavda, “Prevention of SQL

Injections From Web Applications,” Int. J.

Adv. Eng. Res., vol. 1, no. 12, pp. 173–179,

2014.

[2] S. Roy, A. K. Singh, and A. S. Sairam,

“Detecting and Defeating SQL Injection

Attacks,” Int. J. Inf. Electron. Eng., vol. 1, no.

1, pp. 38–46, 2011.

[3] A. S. Gadgikar, “Preventing SQL

injection attacks using negative tainting

approach,” in Proceedings of IEEE

International Conference On Computational

Intelligence and Computing Research, 2013,

pp. 1–5.

[4] W. G. J. Halfond, A. Orso, and P.

Manolios, “Using positive tainting and

syntax-aware evaluation to counter SQL

injection attacks,” in Proceedings of the 14th

ACM SIGSOFT international conference on

Foundations of software engineering -

SIGSOFT ’06/FSE-14, 2006, pp. 175–185.

[5] A. John, A. Agarwal, and M. Bhardwaj,

“An adaptive algorithm to prevent SQL

injection,” An Am. J. Netw. Commun., vol.

4, pp. 12–15, 2015.

[6] [Online]. Available:

blogs.embracadero.com/pawelglowacki/11.

[Accessed: 15-Apr-2015]. [7] B. Shehu and

A. Xhuvani, “A Literature Review and

Comparative Analyses on SQL Injection :

Vulnerabilities , Attacks and their Prevention

and Detection Techniques,” IJCSI Int. J.

Comput. Sci., vol. 11, no. 4, pp. 28–37, 2014.

[8] S. Bangre and A. Jaiswal, “SQL Injection

Detection and Prevention Using Input Filter

Technique,” Int. J. Recent Technol. Eng., vol.

1, no. 2, pp. 145–150, 2012.

[9] A. Sadeghian, M. Zamani, and A. A.

Manaf, “A Taxonomy of SQL Injection

Detection and Prevention Techniques,” in

Proceedings of IEEE International

Conference on Informatics and Creative

Multimedia, 2013, pp. 53–56.

[10] E. Bertino, A. Kamra, and J. P. Early,

“Profiling database applications to detect

SQL injection attacks,” in Proceedings of the

IEEE International Conference on

Performance, Computing, and

Communications, 2007, pp. 449–458.

[11] D. Kar and P. Suvasini, “Prevention of

SQL Injection Attack Using Query

Transformation and Hashing,” in

Proceedings of the IEEE 3rd International

Conference Advance Computing, IACC,

2013, pp. 1317–1323.

[12] P. Kumar and R. Pateriya, “A Survey on

SQL injection attacks, detection and

prevention techniques,” in Proceedings of

IEEE 3rd International Conference on

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:329

Computing Communication & Network

Technologies, July 2012, pp. 1–5.

[13] R. Dharam and S. G. Shiva, “Runtime

Monitors for Tautology based SQL Injection

Attacks,” Int. J. CyberSecurity Digit.

Forensics IEEE, vol. 53, no. 6, pp. 253–258,

2012. [14] X. Fu, X. Lu, and B. Peltsverger,

“A static analysis framework for detecting

SQL injection vulnerabilities,” in

Proceedings of 31st Annual International

Conference on Computer Software and

Application, 2007, pp. 87–96.

[15] K.-X. Zhang, C.-J. Lin, S.-J. Chen, Y.

Hwang, H.-L. Huang, and F.-H. Hsu,

“TransSQL: A Translation and Validation-

Based Solution for SQL-injection Attacks,”

in Proceedings of First International

Conference on Robot, Vision and Signal

Processing, 2011, pp. 248–251.

[16] K. Kemalis and T. Tzouramanis, “SQL-

IDS : A Specification-based Approach for

SQL-Injection Detection,” in Proceedings of

ACM Conference on Applied Computing,

March 2008, pp. 2153–2158.

[17] P. Bisht, “CANDID : Dynamic

Candidate Evaluations for Automatic

Prevention of SQL Injection Attacks,” ACM

Int. J. Comput. Sci., vol. V, no. 2, pp. 1–38,

2010.

[18] G. T. Buehrer, B. W. Weide, and P. A.

G. Sivilotti, “Using Parse Tree Validation to

Prevent SQL Injection Attacks,” in

Proceedings of 5th ACM International

Conference on Software Engineering and

Middleware, September 2005,, pp. 106–113.

[19] S. W. Boyd and A. D. Keromytis,

“SQLrand : Preventing SQL Injection

Attacks,” IEEE Appl. Cryptogr. Netw.

Secur., vol. 2, pp. 292–302, 2004.

[20] W. G. J. Halfond and A. Orso,

“Preventing SQL injection attacks using

AMNESIA,” in Proceeding of the 28th ACM

International Conference on Software

Engineering - ICSE, 2006, p. 795-798

JASC: Journal of Applied Science and Computations

VOLUME 3, ISSUE 1, JAN-JUNE-2016

ISSN NO: 1076-5131

Page No:330

